italianoenglishfrançaisdeutschespañolportuguês
Language
Search
  • » News
  • » New discovery to accelerate development of salt-tolerant grapevines

New discovery to accelerate development of salt-tolerant grapevines

New discovery to accelerate development of salt-tolerant grapevines

A recent discovery by Australian scientists is likely to improve the sustainability of the Australian wine sector and significantly accelerate the breeding of more robust salt-tolerant grapevines. 

With funding from Wine Australia, a team of scientists from the ARC Centre of Excellence in Plant Energy Biology at the University of Adelaide and CSIRO Agriculture and Food identified genes expressed in grapevine roots that limit the amount of sodium – a key component of salt – that reaches berries and leaves. The research has been published in the journal New Phytologist.

‘Berries that contain too much sodium may be unsuitable for wine production and this can lead to vineyards remaining unpicked, resulting in financial losses for vineyard owners,’ says Dr Sam Henderson, co-first author of the study, from the University of Adelaide. 

‘We set out to determine why some grapevines accumulate salt and others don’t, and found a specific mutation in a sodium transport protein found in grapevine roots, which prevents it from working effectively. This leads to more salt leaking into the shoots of vines from the soil,’ Dr Henderson says.

While low levels of salt can improve the flavour of wine, in excess it can lead to unpalatable tastes, reduce fruit yield and damage the long-term health of grapevines – it is a problem experienced in premium wine regions around the world. In Australia’s broader agriculture, food and wine sectors, issues caused by salinity have been estimated to cost in excess of $1 billion each year.

‘By comparing the DNA of different grapevines we identified a specific gene that is associated with sodium exclusion from shoots,’ says co-first author Dr Jake Dunlevy from CSIRO.

‘This discovery has allowed us to develop genetic markers that are being used to breed more salt-tolerant grapevine rootstocks, allowing new genotypes to be screened at the seedling stage rather than through lengthy and expensive field-based vineyard trials.’

‘Traditionally, winegrape rootstocks have been developed in wine producing regions in the United States and Europe. This new research supports a breeding program to combine multiple beneficial traits in grapevines using conventional breeding, to develop robust rootstocks specifically for Australian conditions and support the local wine sector’s sustainability well into the future,’ says Dr Liz Waters, Wine Australia’s General Manager Research, Development and Extension.

The research was led by Dr Mandy Walker, CSIRO, and Professor Matthew Gilliham, University of Adelaide, who are continuing to collaborate on additional factors that will further improve grapevine salt tolerance, such as the exclusion of chloride.

Source: University of Adelaide 

Published on 27/11/2017
Item available in italiano spagnolo
Related sheets
  • The 2016 California winegrape harvest was early, with a mostly normal yield of exceptional quality fruit throughout the state. A relatively even growing season followed welcome winter rains that he...
    Published on:01/11/2016
  • The fifth edition of the International Grenaches du Monde Competition, launched in 2013 by the Conseil Interprofessionnel des Vins du Roussillon (CIVR – Interprofessional Board of Roussillon ...
    Published on:19/02/2017
  • Entries open in September 2016 and close on 28 February 2017.
    The OIV Awards rewards the best works published over the past two previous years which provide an original and relevant contribution, with an international significance for the vine and wine sector...
    Published on:23/08/2016
  • 2017 OIV Research grant program
    Grants offered within the framework of this programme are short term (six months to fifteen months maximum) and are provided for specific post graduate training programmes
    Published on:29/07/2017
  • Who is active, entertaining, educating the masses, and sharing on Twitter, Facebook, Instagram and the other platforms today?
    Published on:05/02/2017
  • Sustainable viticulture and winemaking under climate change scenarios
    Deadline for abstract submission has been extended until April 20th
    Published on:03/04/2017
© All Right Reserved
ISSN n. 1826-1590
powered by infonet srl piacenza
Privacy Policy
This website and its related third-party services make use of cookies necessary for the purposes described in the cookie policy. If you want to learn more about cookies or how to disable them (either totally or partially), please see the cookie policy. By closing this banner, scrolling through this page, clicking on a link or continuing navigation in any other way, you consent to the use of cookies.
More informationOK

- A +