Thanks to practical experience in various wineries in recent years, it is now clear that, similarly to the well-known phenomenon in corks, there are several sources of unpredictable contamination of oak wood by 2,4,6-trichloroanisole (TCA). TCA affects staves in the same barrel very sporadically, with extremely limited contaminated areas on the surface that may reach several millimeters in depth. The precise origin of the TCP and TCA in oak wood is not known at this stage. Available data indicate that the phase where stavewood is naturally dried and seasoned is the source of these undesirable organochlorine contaminants. The strictly chemical formation of 2,4,6-trichlorophenol (TCP), derived from organochlorine biocides, was demonstrated to be impossible under traditional cooperage conditions, and its accumulation remained highly improbable. Similarly to previous discoveries in corks, all the analyses of oak wood suggested that the TCP was of biochemical origin. The capacity to biomethylate chlorophenols is well-known and relatively widespread among the usual microflora in stavewood, but the precise origin of the intermediary leading to TCP formation is still unknown. One probable hypothesis is that this reaction involves chloroperoxidase (CPO). Several ideas have been proposed, but the microorganisms responsible for the formation of the TCA precursor in oak wood have not yet been identified. The extent of this problem is still severely underestimated by coopers and barrel-users, due to the extremely unpredictable, localized contamination of the staves (We recommend that you consult the full text of this article).

Related sheets: