• » Macrowine 2021
  • » The impact of acetaldehyde on phenolic evolution of free-SO2 wines
  • How to better manage your wine shelf-life
    Three free webinars in collaboration with Vinventions
    Infowine in partnership with Vinventions invites you to a series of 3 webinars focused on the key parameters you need to monitor at different winemaking stages to optimize wine profile and its long...
    Published on: 10/18/2021

The impact of acetaldehyde on phenolic evolution of free-SO2 wines

Coppola Francesca, Picariello Luigi, Forino Martino, Moio Luigi, Gambuti Angelita
Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Avellino, Italy.



Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition, it is important to know the oxidative history of the wine. Acetaldehyde, the main wine oxidation product, is a powerful electrophile that reacts with numerous wine compounds giving desired products as the stable red polymeric pigments and the less astringent tannins but, also negative off-flavours. Although all these reactions are well known, the border between those increasing wine longevity and those decrementing wine quality is difficult to determine. This study has the aim to investigate the kinetics of consumption of acetaldehyde in red wines to give information useful for the further management of sulphur dioxide.



Free-SO2 red wines were spiked with increasing levels of acetaldehyde (from 0 to 190 mg/L) and analysed over time. Chromatic properties and main phenolic classes were analysed by conventional spectrophotometric methods. Small phenolics, polymeric pigments (PP) and polymeric tannins (PT) were detected by HPLC, MS and NMR analysis.  Reactivity of tannins towards BSA and saliva was also determined (1-2-3).



Already two hours after the addition of acetaldehyde the 50% was consumed in reactions with phenolic compounds and the consumption increased over time. Also when a great excess of aldehyde was added (190 mg/L) and after one year of aging a loss of 75% of the initial value was detected.
The first compounds that were consumed in reactions with acetaldehyde were anthocyanins and flavanols and a contemporary increase of polymeric pigments and tannins occurred. BSA and saliva reactive tannins increased over time when high concentration of acetaldehyde were added.



For a correct management of sulphur dioxide when bottling a free-SO2 red wine the content of acetaldehyde and phenolic strong reactants (anthocyanins and flavanols) should be determined to limit or favour further acetaldehyde reactions.



1.    Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. Am. J. Enol. Vitic. 2003, 54, 301–306.
2.    Gambuti, A.; Picariello, L.; Rinaldi, A.; Moio, L. Evolution of Sangiovese wines with varied tannin and anthocyanin ratios during oxidative aging. Front. Chem. 2018, 6, 63.
3.    Organisation Internationale de la Vigne et du Vin. Compendium of International Methods of wine And Must Analysis. Available online:

Published on 08/03/2018
Related sheets
© All Right Reserved
ISSN 1826-1590 VAT: IT01286830334
powered by Infonet Srl Piacenza
Privacy Policy
This website and its related third-party services make use of cookies necessary for the purposes described in the cookie policy. If you want to learn more about cookies or how to disable them (either totally or partially), please see the cookie policy. By closing this banner, scrolling through this page, clicking on a link or continuing navigation in any other way, you consent to the use of cookies.
More informationOK

- A +
ExecTime : 1,844727