Are my bubbles shrinking? A deeper look at oxygen desorption in wine

Steven, SUTTON, Wessel Du Toit, Robbie Pott
Stellenbosch University

Email contact:  stevens[@]


In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine. Oxygen desorption into nitrogen gas is a similar process, but there has been little work focusing on this process and no work explicitly examining the effect that changes in wine components have on the process. The removal of excess dissolved oxygen from wine prior to bottling is commonly done in winemaking. A widely used method involves sparging nitrogen through the wine, in a process known as desorption. An indicator of the rate of oxygen desorption (DO) is the oxygen volumetric mass transfer coefficient (kLa), which can be determined experimentally. The aim of the study was to examine how temperature, superficial gas velocity, and ethanol and glycerol levels affected the kLa of dissolved oxygen into nitrogen gas in an aqueous solution of ethanol and glycerol.


For the experiment, ethanol and glycerol concentrations were varied between 9 and 15% v/v, and 5 and 25 g/L respectively. The temperature was varied between 10 and 20° C. The superficial gas velocity was varied between 0.15 and 0.32 cm/s. The experiments were performed in a 15 L bubble column with a stone sparger. Before each run, the column was sparged with air in order to saturate the solution. Nitrogen was sparged until the concentration of oxygen was below 0.1 mg/L. DO levels were measured with an oxygen probe. The mean bubble size was determined using a high speed camera.


The results showed that in the ranges tested, ethanol and glycerol concentration had no effect on the kLa. A strong correlation was shown between superficial gas velocity, temperature and the kLa. The kLa varied between 0.0139 and 0.0236 s-1. It was expected that the varying ethanol and glycerol concentrations would have an effect on kLa as the physical properties changed. Consequently an experiment was done in which ethanol concentration was incrementally increased from 0 to 10% v/v. It was found that raising the ethanol concentration to 0.1% increased the kLa significantly relative to water. Beyond this the kLa did not increase significantly. It was found that at ethanol concentrations of 0 - 0.02% the mean bubble size was nearly 2 times greater than at 0.05%. This suggests that the rise in in kLa is as a result of smaller bubbles. Preliminary tests performed on white wine showed that kLa was lower than in the ethanol/glycerol solutions under the same conditions. The kLa range was 0.0094 s-1 to 0.012 s-1 at 10° C and 20° C respectively, both at 0.20 cm/s.


The use of an aqueous solution of ethanol and glycerol overestimates the oxygen desorption rate in wine. This indicates that other unexamined properties within wine have a significant effect on kLa. Oxygen desorption is significantly improved with the introduction of as little as 0.05 % ethanol. Examining how wine proteins, acids, dissolved solids and phenols affect oxygen kLa may give a better estimate of the desorption process in wine.



Cerda-Drago, T. G. (2015). Modelling the oxygen dissolution rate during oenological fermentation. Pontifica Universidad Catolica de Chile.

Chiciuc, I., Farines, V., Mietton-Peuchot, M., & Devatine, A. (2010). Effect of wine properties and operating mode upon mass transfer in micro-oxygenation. International Journal of Food Engineering, 6(6).

Devatine, A., Chiciuc, I., Poupot, C., & Mietton-Peuchot, M. (2007). Micro-oxygenation of wine in presence of dissolved carbon dioxide. Chemical Engineering Science, 62(17), 4579–4588.

Kadic, E. (2010). Survey of gas-liquid mass transfer in bioreactors [Iowa State University].

Painmanakul, P., Loubiere, K., Hebrard, G., Mietton-Peuchot, M., & Roustain, M. (2005). Effect of Surfactants on Liquid Side Mass Transfer Coefficients. Chemical Engineering Science, 60(22), 6480–6491.

Shehadeh, A., Kechagia, D., Evangelou, A., & Tataridis, P. (2019). Effect of ethanol , glycerol , glucose and tartaric acid on the viscosity of model aqueous solutions and wine samples. Food Chemistry, 300(January), 125191.

Published on 06/17/2018
Related sheets
© All Right Reserved
ISSN 1826-1590 VAT: IT01286830334
powered by Infonet Srl Piacenza
Privacy Policy
This website and its related third-party services make use of cookies necessary for the purposes described in the cookie policy. If you want to learn more about cookies or how to disable them (either totally or partially), please see the cookie policy. By closing this banner, scrolling through this page, clicking on a link or continuing navigation in any other way, you consent to the use of cookies.
More informationOK

- A +
ExecTime : 1,5625