italianoenglishfranÁaisdeutschespaŮolportuguÍs
Language
Search
  • » Scientific abstract
  • » Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid
  • Top scientific programme at the MACROWINE 2021 congress
    Virtual Conference - from 23 to 30 June 2021
    It is considered to be the most important scientific congress for the wine sector, due to the breadth of topics covered - from vine to glass - and due to the number and origin of the researchers wh...
    Published on: 06/01/2021

Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid

Arnous, A; Meyer, AS. 2009.. BIOTECHNOLOGY LETTERS 31 (12): 1953-1960.

The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R (2) = 0.96, P < 0.0001. The kinetics of caffeic acid formation with time in response to initial p-coumaric acid levels and at different grape skin concentrations, indicated that the grape skins harboured an o-hydroxylation activity, proposedly a monophenol- or a flavonoid 3'-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K (m) of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid. (We recommend that you consult the full text of this article).
Published on 11/16/2010
Related sheets
© All Right Reserved
ISSN 1826-1590 VAT: IT01286830334
powered by Infonet Srl Piacenza
Privacy Policy
This website and its related third-party services make use of cookies necessary for the purposes described in the cookie policy. If you want to learn more about cookies or how to disable them (either totally or partially), please see the cookie policy. By closing this banner, scrolling through this page, clicking on a link or continuing navigation in any other way, you consent to the use of cookies.
More informationOK

- A +
ExecTime : 1,625