Agroscope investigated the impact of the leaf-to-fruit ratio on nitrogen (N) partitioning in grapevine following a foliar urea application with the aim of increasing the yeast assimilable nitrogen (YAN) concentration in the must.
Foliar urea was applied to field-grown Vitis vinifera L. cv. Chasselas grapevines as part of a split-plot trial with two variable parameters: canopy height (90 or 150 cm) and fruit load (5 or 10 clusters per vine). Foliar application of 20 kg/ha of 15N-labelled urea (10 atom% 15N) was performed at veraison. The isotope labelling method allowed to observe foliar-N partitioning in the plant at harvest. The leaf-to-fruit ratio varied between 0.4 and 1.6 m2/kg, and strongly impacted the N partitioning in the grapevines. Total N and foliar-N partitioning was mainly affected by the variation of canopy height. The YAN concentration varied from 143 to 230 mg/L (+60 %) depending on the leaf area. An oversized canopy (+31 %DW) induced a decrease in the total N concentration of all organs (-17 %), and a decrease in YAN quantity in the must in particular (-53 %). A negative correlation between the N concentration and the carbon isotope discrimination (CID) could be pointed out in a condition of no water restriction (e.g., R2 = 0.65 in the must).
An excessive leaf area can induce YAN deficiency in the must. Thus, a balanced leaf-to-fruit ratio – between 1 and 1.2 m2/kg – should be maintained to guarantee grape maturity, YAN accumulation in the must and N recovery in the reserve organs.
The results of this study encourage further research to understand the role of other physiological parameters that affect N partitioning in the grapevine – YAN accumulation in the must in particular – and add new perspectives for N management practices in the vineyard.
(We recommend that you consult the full text of this article)