italianoenglishfrançaisdeutschespañolportuguês
Language
Search
  • » Technical Articles
  • » Wine Reduction Potentials: Are These Measured Values Really Reduction Potentials?

Wine Reduction Potentials: Are These Measured Values Really Reduction Potentials?

During its production wine can react with substantial amounts of aerial oxygen. Some oxidation can be beneficial, especially in red wine, but if allowed to occur in excess it is highly detrimental, making oxygen management an important aspect of wine making.

The use of reduction potentials at platinum electrodes to measure the redox state of wines extends back over 80 years. The premise is that reductants in wine produce oxidized derivatives and the balance between the two determines the reduction potential, as in classical electrochemistry.

As the detailed mechanism of wine oxidation becomes better understood, it is apparent that redox couples in wine do not function in this way. It is proposed that the observed potentials are mixed potentials largely due to ethanol oxidation coupled with oxygen reduction. Under low oxygen conditions, further redox couples can contribute to the mixed potential, both directly and via adsorption effects at the platinum electrode.

Read the full article

Published on 30/06/2019
Pictures
Item available in italiano
Related sheets
    E. Aguera, J.M. Sablayrolles
    The seasonal character of harvests limits winemaking considerably, especially oenological research. Thus, conserving sterile musts during the whole year to carry out experiments is certainly a very...
    Published on:10/08/2005
    A new device for stabilisation of white wines throughout a continous flow system
    Parpinello, G.P., Ricci, A., Serantoni, M., Balducci, A., Ragni, L., Versari, A.; University of Bologna, Italy
    Proteins occurring in wine originate from several sources during the winemaking process. Protein content in wines ranges from traces up to hundreds of mg/L, and may cause physical instability in wh...
    Published on:15/01/2020
    A new life for winemaking lees: from waste to photovoltaics
    Manuel Meneghetti, DSMN, Università Ca’ Foscari Venezia
    The sun, the main natural resource of our planet, has been studied in recent years optimizing materials, technologies and processes to obtain electrical energy thanks to the best renewable and clea...
    Published on:09/09/2020
    A novel electrochemical approach for rapid analysis of white grapes polyphenols and monitoring of pre-fermentative operations
    M. UGLIANO, J. WIRTH, S. BÉGRAND, J. B. DIÉVAL, C. PASCAL, S. VIDAL; Università degli Studi di Verona - Vinventions, Francia
    The ability to rapidly quantify and characterize phenolic composition of grapes and must is critical in the optimization of winemaking practices. In the case of white wine production, measurement o...
    Published on:02/05/2019
    An electrochemical method for real time measurement of polyphenols during winemaking
    By Christine Pascal, Nelly Champeau, Jean Baptiste Diéval, Stéphane Vidal; Vinventions, Enology team, France
    Polyphenols are known to play a major role in must oxidation as well as in wine aging and oxidation. However, they are difficult to measure in the cellar due to lack of adequate technology. Therefo...
    Published on:03/02/2020
    Application of unconventional tannins as markers of authenticity
    E. Longo, F. Rossetti, V. Merkyte, M. Jourdes, P.L. Teissedre and E. Boselli; Univ. of Bolzano, Univ. Politec. delle Marche-Italy, ISVV-France
    This work aimed at the identification of novel macro-cyclic ‘crown’ prodelphinidins (c-PD) in 19 PDO wines from South Tyrol (vintage 2016) obtained from several regional (Lagrein and Vernatsch/Schi...
    Published on:21/10/2020
© All Right Reserved
ISSN 1826-1590 VAT: IT01286830334
powered by Infonet Srl Piacenza
Privacy Policy
This website and its related third-party services make use of cookies necessary for the purposes described in the cookie policy. If you want to learn more about cookies or how to disable them (either totally or partially), please see the cookie policy. By closing this banner, scrolling through this page, clicking on a link or continuing navigation in any other way, you consent to the use of cookies.
More informationOK

- A +
ExecTime : 1,734375