• » Winemaking Processes
  • The Future of Oenological Webinars
    Let's Create Together the Most Interesting Content for the Industry!
    We are excited to involve you in the process of creating our oenological content! Your feedback is essential to providing you with articles, webinars and trainings that are truly useful for you and...
    Published on: 01/31/2024


Kathleen Arnink and Thomas Henick-Kling

Previous studies have shown the importance of ethanol and sulfur dioxide production by Saccharomyces cerevisiae on the growth of Oenococcus oeni. Our goal was to examine other interactions between these organisms, including competition for nutrients and production of microbial inhibitors, and their relative importance in winemaking. Fourteen strains of S. cerevisiae commonly used in vinification and 16 strains of O. oeni were studied. To better replicate conditions of winemaking in the laboratory, natural grape juices were fermented with the different yeasts, followed by inoculation of the bacterial strains into the wines. Bacterial growth and malate depletion were monitored in the wines. Results from these fermentations were compared to industry trials and to interactions observed on agar plates. The relationship between growth and malolactic activity in O. oeni is important to the discovery of a simple method for identification of positive and negative interactions between yeast and bacteria. Many strains performed malolactic fermentation without growing in the wine. Most plating methods rely on growth of the bacteria and will not be successful predictors of compatible pairs when the bacteria do not require growth for malolactic activity. The plating method described here is useful for differentiating between effects of yeast on O. oeni due to nutrient competition and effects due to production of inhibitory compounds. Eighty-eighty percent of the wines showing negative growth effects on plates also resulted in unsuccessful malolactic fermentation in the laboratory-scale wines. We recommend that you read the full text of this article, which was published in the American Journal of Enology and Viticulture 56: 228-237. Follow the link on the right to find the full text of this paper.

Published on 06/18/2006
Related sheets
    E. Aguera, J.M. Sablayrolles
    The seasonal character of harvests limits winemaking considerably, especially oenological research. Thus, conserving sterile musts during the whole year to carry out experiments is certainly a very...
    Published on:08/10/2005
    Protein Instability in White Wines, How to Manage it
    Matteo Marangon | University of Padova (Italy)
    This video covers the recent developments in wine protein instability, including the most current version of the mechanism describing how protein instability forms in white wines. - The methods for...
    Price:47 €(Tax included)
    Published on:10/18/2023
    Protection against spoilage microorganisms: alternatives to SO2
    Video Extract from Fernando Zamora's presentation at Macrowine
    Protection against spoilage microorganism is one of the main effects of SO2. How can we reduce its addition to a minimum or even totally avoid its use? Fernando Zamora talsk about a few products su...
    Published on:09/06/2023
    Sparging of wine: don’t stress
    Wessel du Toit | University of Stellenbosh – South Africa
    High levels of dissolved oxygen in wine can lead to unwanted oxidation. Dissolved oxygen levels in wine are often reduced by sparging with an inert gas such as N2. However, the factors that influen...
    Price:60 €(Tax included)
    Published on:07/26/2023
    Emerging non-thermal technologies applied to winemaking
    Antonio MORATA, Universidad Politécnica de Madrid, Spain
    In the keynote speech given at Enoforum 2022, Antonio Morata talked about emerging non-thermal technologies applied to oenology and their impact on the extraction of phenolic compounds from grapes,...
    Price:27 €(Tax included)
    Published on:09/20/2022
    All acids are equal, but some are more equal than others: (BIO)ACIDIFICATION OF WINES
    Hranilovic A. et al., ISVV, University of Bordeaux (France) | The University of Adelaide (Australia)
    Interesting and sustainable oenological solution to combat the lack of acidity in wines and microbial threats: bio- acidification with some strains of Lachancea thermotolerans through the productio...
    Published on:07/13/2022
© All Right Reserved
ISSN 1826-1590 VAT: IT01286830334
powered by Infonet Srl Piacenza
- A +
ExecTime : 2,25