italianoenglishfrançaisdeutschespañolportuguês
Language
Search
  • » Winemaking Processes
  • » Polysaccharide Profile and Content during the Vinification and Aging of Tempranillo Red Wines

Polysaccharide Profile and Content during the Vinification and Aging of Tempranillo Red Wines

Zenaida Guadalupe and Belén Ayestarán, J. Agric. Food Chem., 55 (26), 10720–10728

Passing from must to wine produced a loss of low-molecular-weight grape structural glucosyl polysaccharides, and an important gain in yeast mannoproteins (MP) and grape-derived arabinogalactan proteins (AGP), and rhamnogalacturonans-II (RG-II). AGP were more easily extracted than RG-II, and small quantities of RG-II monomers and galacturonans were detected. Postmaceration produced a reduction in all grape polysaccharide families, particularly acute in AGP. The reduction of polysaccharides during malolactic fermentation only affected grape AGP, and MP were continuously liberated during the entire vinification process. Wine oak and bottle aging was associated with a relative stability of the polysaccharide families. AGP were thus the majority polysaccharides in young wines but, contrary to what may be thought, structural glucosyl oligosaccharides dominated in musts and MP in aged wines. Precipitation of polysaccharides was noticeable during vinification, and it mainly affected high-molecular-weight AGP and MP. Hydrolytic phenomena affected the balance of wine polysaccharides during late maceration-fermentation. (We recommend that you consult the full text of this article)
Published on 24/06/2008
Related sheets
© All Right Reserved
ISSN 1826-1590 VAT: IT01286830334
powered by Infonet Srl Piacenza
Privacy Policy
This website and its related third-party services make use of cookies necessary for the purposes described in the cookie policy. If you want to learn more about cookies or how to disable them (either totally or partially), please see the cookie policy. By closing this banner, scrolling through this page, clicking on a link or continuing navigation in any other way, you consent to the use of cookies.
More informationOK

- A +
ExecTime : 0,875