SURVIVAL PATTERNS OF DEKKERA BRUXELLENSIS IN WINES AND INHIBITORY EFFECT OF SULPHUR DIOXIDE
A. Barata, J. Caldeira, R. Botelheiro, D. Pagliara, M. Malfeito-Ferreira and V. Loureiro Int. J. Food Microbiology 121 (2), 201-207, 2008
The wine spoilage yeast species Dekkera bruxellensis, after inoculation in red wines, displayed three survival patterns characterized by: i) initial lag phase followed by growth and sequential death; ii) initial death phase leading to reduced viable counts followed by growth and sequential death; and iii) death phase leading to complete loss of viability. These survival patterns were observed for the same strain in different dry red wine blends with 12% (v/v) ethanol and pH 3.50, in the absence of free sulphur dioxide. For the same wine blend, these patterns also varied with the tested strain. Under laboratory conditions the addition of 150mg/l of potassium metabisulphite (PMB) to dry red wine with 12% (v/v) ethanol and pH 3.50 reduced initial cell counts by more than 6 logarithmic cycles, inducing full death within less than 24h. Winery trials showed that D. bruxellensis blooms were only prevented in the presence of about 40mg/l of free sulphur dioxide in dry red wine, with 13.8% (v/v) ethanol and pH 3.42, matured in oak barrels. These different amounts of PMB and sulphur dioxide corresponded to about 1mg/l of molecular sulphur dioxide. Our results therefore demonstrate that the control of populations of D. bruxellensis growing in red wine can only be achieved under the presence of relatively high doses of molecular sulphur dioxide. (We recommend that you consult the full text of this article. Original title …)
The seasonal character of harvests limits winemaking considerably, especially oenological research. Thus, conserving sterile musts during the whole year to carry out experiments is certainly a very...
Video Extract from Fernando Zamora's presentation at Macrowine
Protection against spoilage microorganism is one of the main effects of SO2. How can we reduce its addition to a minimum or even totally avoid its use? Fernando Zamora talsk about a few products su...
Wessel du Toit | University of Stellenbosh – South Africa
High levels of dissolved oxygen in wine can lead to unwanted oxidation. Dissolved oxygen levels in wine are often reduced by sparging with an inert gas such as N2. However, the factors that influen...
In the keynote speech given at Enoforum 2022, Antonio Morata talked about emerging non-thermal technologies applied to oenology and their impact on the extraction of phenolic compounds from grapes,...
Hranilovic A. et al., ISVV, University of Bordeaux (France) | The University of Adelaide (Australia)
Interesting and sustainable oenological solution to combat the lack of acidity in wines and microbial threats: bio- acidification with some strains of Lachancea thermotolerans through the productio...
Recording of the webinar held by Dominique Delteil
In this recording of the webinar held by Dominique Delteil (Delteil International Wine Consulting) topics covered are: the origin of gluconic acid, its importance as an indicator for optimal grape ...
Cookies are pieces of information that are stored on your device that you can delete or block at any time. The information we collect allows us to improve the service we offer you. No data is disclosed to third parties.
Technical cookies are necessary for the functioning of the site and take into account your browsing preferences, such as language.
Technical cookies
Analytical cookies refer to systems for statistical analysis, in anonymous and aggregate form, relating to the running of the site and user behaviour.
Analytical cookies
Failure to accept the optional cookies will not eliminate the display of any advertisements. You can change your preferences at any time by clicking on the icon in the bottom right-hand corner.