5 List of Figures

Figure 1: Radical formation in wine (Waterhouse & Laurie, 2006) .. 14
Figure 2: Oxidation reaction in wine (Elias & Waterhouse, 2010) .. 14
Figure 3: Wine phenolic oxidation pathway and subsequent hydroxyl radical oxidation of major wine compounds (Waterhouse & Laurie, 2006) .. 14
Figure 4: Variation of water vapor pressure with temperature (PreSens, 2006) 20
Figure 5: Sensory descriptors for white wine in a german consumer study 22
Figure 6: Dissolved CO₂ at 101.3 kPa calculated from (Lonvaud-Funel & Ribéreau-Gayon, 1977) (short dash), and Boulton et al. 1996 (points) Sander, 1999 (solid line), and the OIV Reference Formula (long dashed) .. 26
Figure 7: Exemple for pressure in tank dependant on gas concentration 29
Figure 8: Vapor pressure of pure ethanol (short dash), water (solid line) and ethanol water mixture (12%vol long dash) as a function of temperature .. 31
Figure 9: Cut through a hollow fiber membrane (Gabelmann et al., 2005) 35
Figure 10: Schematic view of the cross flow hollow fiber module with the direction of flow in the shell side compartment Liqui-Cel® (Membrana) .. 36
Figure 11: Mean superficial velocity in shell side dependent on volume liquid flow rate at Liqui-cel Extra Flow 4x28 membrane contactor (own calculation) 38
Figure 12: Mass transfer and dominant resistances in microporous hollow fiber membranes (Mavroudi et al. 2006) .. 41
Figure 13: Fluid flow velocity through the channel of a membrane module (Baker 2004 p. 164) .. 42
Figure 14: Calculated Reynolds number of water dependant on liquid flow rate at a Liqui-cel 4x28 X50 membrane contactor ... 43
Figure 15: Partial membrane pore wetting (Mavroudi et al. 2006) .. 44
Figure 16: Experimental determination of membrane resistance with Wilson plot (own data) ... 45
Figure 17: Modeling of the concentration gradient within a membrane contactor left side gas, middle section membrane, right side, liquid with boundary layer (Shirazian et al., 2009) .. 46
Figure 18: Gas Injector. (Lasovitec) .. 48
Figure 19: Carbofresh® (Technica) .. 49
Figure 20: Corbocfresh® deluxe (Technica) ... 49
Figure 21: EVO1000 (Parsec) .. 49
Figure 22: DEOS® (Paetzold) .. 50
Figure 23: Schema of the Vacuum mode (Blank & Vidal, 2013) .. 51
Figure 24: Decarbinication and desoxygenation in vacuum mode according to the liquid flow (Blank & Vidal, 2013) .. 51
Figure 25: Schema of the Carbonication mode (Blank & Vidal, 2013) 52
Figure 26: Enrichment of CO₂ and desoxygenation by Carbonication mode (Blank & Vidal, 2013) .. 53
Figure 27: Schema of the Strip CO₂ mode (Blank & Vidal, 2013) .. 53
Figure 28: Enrichment CO₂ and desoxygenation by strip CO₂ mode at 12 °C (Blank & Vidal, 2013) .. 54
Figure 29: Schema of the Strip N₂ mode (Blank & Vidal, 2013) ... 55
Figure 30: Decarbonication and desoxygenation in Strip N₂ mode (Blank & Vidal, 2013) ... 55
Figure 31: Schema of the Combo mode (Blank & Vidal, 2013) .. 56
Figure 32: Evolution of the CO₂ content and desoxygenation in Combo CO₂ mode (Blank & Vidal, 2013) .. 57
Figure 33: Different operating modes impact on the dissolve oxygen content (Blank & Vidal, 2013) .. 57
Figure 34: Different operating modes impact on the dissolve carbonic gas content (Blank & Vidal, 2013) .. 58
Figure 35: Flow schema of the porous injector and the WineBrane processes 60
Figure 36: Pervélys process by Ymelia .. 61
Figure 37: Example of Pervelys integration in a process lign .. 62
Figure 38: Oxi_Out process (Agrovin) .. 62
Figure 39: CO₂ membrane system (K & H) .. 62
Figure 40: a experimental pilot, b industrial skid ... 63
Figure 41: Romfil Gas Contactor ... 63
Figure 42: Winegas process from Emrich-Edelstahlbau ... 64
Figure 43: The different fractions of sulfur dioxide in wines .. 66
Figure 44: Principle of the membrane process applied to extract the sulfite content from an aqueous solution (Plaza et al., 2014) ... 67
Figure 45: Concentration profile of ethanol in dealcoholization process by osmotic distillation (Varavuth et al., 2009) ... 68
Figure 46: Angle contact ... 72
Figure 47: A drop water on a plane surface without asperities and an exemple of a suer hydrophobic surface .. 73
Figure 48: Microscopic view of an hydrophobic surface ... 73
Figure 49: Different fouling mecanism's .. 75
Figure 50: Diagram showing fouling mechanisms as a function of colloid size (or surface repulsion) and driving force (transmembrane pressure or permeate flux)(Bacchin et al., 2002) ... 75
6 List of Tables

Table 1: Enthalpy and solubility of O₂, CO₂ and N₂ at 20°C and 25°C in water from Sander, 1999... 6

Table 2: HENRY constants and solubility of the three main gases at 20°C in water under pure atmosphere and 101.325 kPa pressures... 7

Table 3: Gas diffusion coefficient in water at 20, and 25 °C from the Handbook of Chemistry and Physics, 85TH Edition, 2004-2005... 9

Table 4: Diffusion coefficients in 10⁻⁹ m².s⁻¹ of carbon dioxide, nitrogen and oxygen, ethyl acetate in water, pure ethanol and Champagne wines... 10

Table 5: Properties of main gases.. 11

Table 6: Solubility in water under water saturated air at 101.325 kPa pressure and 20°C..... 11

Table 7: Oxygen uptake during vinification (Vidal and Moutounet, 2008)............................. 13

Table 8: Henry's constant of O₂ and CO₂ versus temperature and O₂ saturation concentration for a gas phase (air ambient) and CO₂ saturation concentration for a gas phase (pure CO₂) (Devatine and al. 2007).. 17

Table 9: Numerical values of coefficients as a function of temperature (Devatine and al. 2007).. 17

Table 10: Desired amounts of CO₂ [mg.L⁻¹].. 23

Table 11: Solubility of CO₂ in wine and water at 20°C.. 27

Table 13: Saturated vapor pressure against temperature.. 30

Table 13: Properties of some selected esters and higher alcohols in wine... 34

Table 14: Concentration in liquids and headspace at concentrations typical in wine at 25°C... 35

Table 15: Initial conditions gas consumption study (Blank, 2010)... 59

Table 16: Results of porous injector and WineBrane processes... 60

Table 17: Gas consumption comparison of porous injector and WineBrane per operation and per 50 hL (Blank, 2010)... 60

Table 18: Summary of the parameters influencing membrane fouling.. 76
REFERENCES

Gambuti, A., Rinaldi, A., Lisanti, M. T., & Pessina, R. (2011). Partial dealcoholisation of red wines by membrane contactor technique: Influence on colour, phenolic compounds and... *European Food Research & Technology, 222*.

dans les vins, 147, 137–147.

7 Appendices

Annex 1: FDA Compliance Summary of Liqui-Cel® Membrane Contactor

Sept 06, 2013

FDA Compliance Summary of Liqui-Cel® Membrane Contactors

This letter is a confirmation that all wetted components of the 2.5 x 8, 4 x 13, 4 x 28, 8 x 20, and 10 x 28 high purity Liqui-Cel® Extra-Flow Membrane Contactors, when used in accordance with recommendations given in our product literature for treatment of process water, alcoholic and non-alcoholic beverages, and aqueous, acid and non-acid food products at and below ambient temperatures, are in compliance with all relevant FDA regulations as specified in Title 21 of the Code of Federal Regulations. Our 6 x 28 Membrane Contactors comply with all uses stated above except for use with alcoholic beverages. Note that the 8 x 20 industrial contactor in PVC housing and 10-inch industrial contactor are not FDA compliant.

Contactor Components Fall Within and Meet the Following
Title 21 Code of Federal Regulations Chapter

<table>
<thead>
<tr>
<th>Component</th>
<th>Materials</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow Fiber Array</td>
<td>Polypropylene</td>
<td>177.1520</td>
</tr>
<tr>
<td>Center Tube</td>
<td>Polypropylene, ABS*</td>
<td>177.1520</td>
</tr>
<tr>
<td>Outer Protective Mesh</td>
<td>Polypropylene</td>
<td>177.1520</td>
</tr>
<tr>
<td>O-Rings</td>
<td>EPDM, Viton, Buna-N</td>
<td>177.2600</td>
</tr>
<tr>
<td>Retention Ring, 4-inch</td>
<td>Teflon</td>
<td>177.1550</td>
</tr>
<tr>
<td>Potting Compound</td>
<td>Epoxy</td>
<td>177.1210</td>
</tr>
<tr>
<td>Potting Compound</td>
<td>Polyethylene</td>
<td>177.1520</td>
</tr>
<tr>
<td>Housing, Plastics</td>
<td>Polypropylene, PVD, ABS*</td>
<td>177.1520, 177.1920</td>
</tr>
<tr>
<td>Housing, Steel</td>
<td>316L SS</td>
<td>Not Applicable**</td>
</tr>
</tbody>
</table>

ABS used in 6 x 28 Contactors is not approved for use with alcoholic beverages.

We certify that our 316L SS Housing is 316L SS, which is acceptable for use in pharmaceutical and in Food & Beverages applications.

Regards,

Mark Norton
Plant Manager

Membrana-Charlotte | A Division of Calpact, LLC | 13800 South Lakes Drive | Charlotte, North Carolina 28273 USA
704.587.8888 | www.membrana.com

POLYPOR Company
Annex 2: Membrana-Charlotte EU Food Contact Declaration

Mar 09, 2015

Membrana – Charlotte EU Food Contact Declaration

Liqui-Cel® 2.5 x 8, 4 x 13, 4 x 28, 8 x 20 SS, 8 x 40 SS, 8 x 80 SS and 10 x 28 SS Contactors are non-hazardous articles manufactured from high quality raw materials in accordance with the Membrana-Charlotte product specification and applicable regulatory requirements. In addition, Membrana–Charlotte manufacturing processes are ISO 9001 and 14001 certified.

Membrana–Charlotte has successfully tested Liqui-Cel® 2.5 x 8, 4 x 13, 4 x 28, 8 x 20 SS, 8 x 40 SS, 8 x 80 SS and 10 x 28 SS Contactors plastic raw materials and rubber seals for compliance with EU Regulation for Food Contact: EC No. 1935/2004 and No. 10/2011.

The overall migration limit has to be controlled in the food processing system. It is the end users' responsibility to check same by modeling or appropriate Specific Migration Tests for the suitability of contact with different food types and various end-use conditions. We only certify the Liqui-Cel® products in the condition as sold.

Product Safety and Environmental Management inquiries are welcome and should be forwarded to this office.

[Signature]

Mark Norton
Plant Manager
Membrana-Charlotte, division of Celgard, LLC
Mark.Norton@Liqui-cel.com